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The Spectrum



Introduction

We focus on the mathematical aspect in previous chapters, e.g.,

We now discuss the statistical aspect with some real data sets.

The data is available here.

My code is available here.

·

fitting sinusoids of known/unknown frequency, and

the fast Fourier transform (FFT) algorithms.

-

-

·

How to do spectral analysis of time series?

How to deal with some practical issues such as change in scale?

How to interpret the results from spectral analysis?

-

-

-

·

The link is not up-to-date in the book.-

·

Modern libraries like xts are used.-
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Periodogram Analysis



Definitions recall

Discrete Fourier transform (Section 5.1):

Periodogram (Section 6.1):

·

d( ) = exp(−2πi t), j = 0, 1,… ,n − 1.fj
1
n

∑
t=0

n−1

xt fj

Equivalent to fitting sinusoids (Section 4.1)-

·

I(f) = n|d(f) .|2

An estimate of the spectrum/spectral density-
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Problem: change in scale

No sinusoids can match oscillations that grow in amplitude·

Possible cause: inflation?-
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Beveridge: “index of fluctuation”

Each value is divided by the average of 31 centered adjacent values·

Idea: smoothing-
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Motivation: unobserved components model

Proposed by Harvey (1989)

Bloomfield only considered the trend  and irregular component 

Interpretation for wheat price

·

· Tt It

Multiplicative model: 

Additive model: 

- =xt TtIt

- = +xt Tt It

·

: driven by long-run economic forces such as inflation

: caused by short-run effects such as changes in supply from year to year

 is an unwanted complication in the analysis and approximated by 31-year moving average

 is then estimated by the index of fluctuation

Closely related to filtering in Section 7.2

- Tt

- It

- Tt

- It

-
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Problem: spurious periodicities

Beveridge (1921) gave periodogram ordinates based on index of fluctuation

Under multiplicative model, we can correct for the transfer function to mitigate spurious periodicities

·

It solved the change in scale problem in analyzing periodicity

However, Slutsky pointed out that operations involving linear filtering might lead to spurious
periodicities in 1927

Intuitively, this means that transformation may distort the original periodicity

-

-

-

I try to replicate his estimates but it seems that additional cleanings are necessary (p.139)

As the original paper is not found online, I choose to discuss the idea only

-

-

·

As also shown by Granger and Hughes (1971)

For index of fluctuation, the transfer function is , a Dirichlet kernel (Section 2.2)

After correction, the peak changes as compared with Beveridge (1921)

-

- (f)D31

-
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(Part of) Beveridge’s periodogram
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Logarithmic transformation

Alternatively, we can do logarithmic transformation under multiplicative model

Interpretation

Vs index of fluctuation

·

ln = ln + lnxt Tt It

·

: the typical value of  in the neighborhood of 

: a dimensionless quantity close to 1 so that  fluctuates around 0

- lnTt xt t

- It ln It

·

Nonsinusoidal behavior of a series introduce structure into its Fourier transform

However, they are not revealed by the periodogram (Section 6.5)

Logarithms can reduce this behavior such as spikiness of the peaks

-

-

-

Reasonable as we are interested in  but not the extreme behaviors- It
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Logarithmic transformation
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Data cleaning

Beveridge (1921) argued that the early part of the series was unreliable due to fewer sources

The later part was of a different nature due to economic changes in the 19th century

After clearning, the periodogram of logarithms and index of fluctuation are similar

·

·

I have not looked into wheat market history but it sounds reasonable

We should also be aware of the underlying structure/data quality when we perform statistical
analysis

-

-

·
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Data cleaning

Periodogram of logarithms (dots) and index of fluctuation (squares)
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Analysis of segments: idea

Periodogram of logarithms of two halves (1545-1694=squares, 1695-1844=dots)

Idea: if there is periodicity in a series, it should hold for segments of the same series

Beveridge (1921) also gave some terms from the periodogram of two halves of the series

·

·
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Analysis of segments: wheat price

The two periodograms have the same general shape

However, the fine structures are quite unrelated

These shows that the fine strucuture is not repeated from one segment to the next

Thus the fine structure of these two periodograms is not characteristic of the series as a whole

·

Large at lowest frequencies and show a broad peak between 0.06 and 0.10 cycles per year

Then show a gentle decline over the rest of the periodogram with small fluctuations

-

-

·

A local peak in one is just as likely to be matched by a local trough as a local peak in the other-

·

But the broad features show a statistical regularity or consistency across segments-

I think these terms can be confusing in the literature-

·

Broad features do not appear to vary in this way and may be characteristic of the whole series

In contrast, the periodograms of the variable star data have similar fine structures

-

-
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Analysis of segments: variable stars

Periodogram of two halves of the variable star series
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Analysis of segments: conclusion

Bloomfield is trying to motivate the concept of spectrum here·

A raw periodogram may not be useful

This suggests a smoothed periodogram

-

For variable star, it is directly useful

For wheat price, the fine structure should be suppressed to focus on the broad behavior

-

-

-

So that periodograms of segments may be regarded as the same underlying smooth curve

Such smooth curve is called the spectrum or spectral density of the series

Spectrum exists for many time series models (Chapter 9)

-

-

-
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Spectrum Estimation



Bartlett’s method

Suggested by Bartlett (1948)·

1. Split the series into  non-overlapping segments of similar length

2. For each segment, compute its periodogram

3. Average the result of the periodograms above for the  segments

k

k

Welch’s method: allow overlapping

Average of logarithms or logarithms of averages can both be used

·

It can reduce noise in exchange for reducing the frequency resolution

Often desirable in finite sample

-

-

·

The latter is preferred since it puts more weight on larger values

Small values are the most susceptible to perturbations such as leakage from other frequencies

-

-
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Bartlett’s method

Average segment periodograms for the logarithms of the wheat prices, 1545-1844
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Bartlett spectrum estimate

To understand the effect of Bartlett’s method, we try to find the “periodogram” that it is producing

For simplicity, Bloomfield assumed  are deviations around 0

Now note that

As , we can rewrite the above as

·

· xt

If they are not, we can do demean and arrive at a similar result-

·

I(f) = n|d(f) = n ⋅ d(f) ⋅|2 d(f)¯ ¯¯̄¯̄¯̄¯

= exp{ − 2πif(t − )}.
1
n

∑
t

∑
t′

xtxt′ t′

· t − ∈ [−n + 1,n − 1] ∩ Zt′

I(f) = exp(−2πifr)
1
n

∑
r=−n+1

n−1

∑
t− =rt′

xtxt′

= exp(−2πifr) .
1
n

∑
r=−n+1

n−1

∑
t− =rt′

xtxt′
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Bartlett spectrum estimate

We can see that the periodogram is itself a Fourier series with  as the coefficients

Some manipulation yields

In light of the symmetry of the autocovariances, we can also write

· n−1 ∑t− =rt′ xtxt′

·

I(f) = exp(−2πifr) with = {∑
|r|<n

cr cr
,n−1 ∑n−1

t=r xtxt−r

,c−r

r ≥ 0;

r < 0.

If you are familiar with time series,  is the sample autocovariance of  at lag - cr { }xt r

Estimating the autocovariance structure is equivalent to estimating the spectrum

This also explains long run variance is the normalized spectrum at frequency 0

-

-

·

I(f) = + cos(2πfr).c0 ∑
r=1

n−1

cr
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Bartlett spectrum estimate

Suppose the data are divided into  non-overlapping segments of length 

The average of these periodogram is

Now  is like , a sum of products of the form 

· k m = n/k

: the periodogram of the -th segment

: the autocovariance of the -th segment at lag 

- (f)Ij j

- cj,r j r

·

(f)ŝ = (f) = ( ) exp(−2πifr)
1
k

∑
j=1

k

Ij ∑
|r|<m

1
k

∑
j=1

k

cj,r

= (1 − ) m exp(−2πifr).∑
|r|<m

|r|
m

1
k(m − |r|)

∑
j=1

k

cj,r

· m∑k
j=1 cj,r ncr xtxt+r

Except that the term is included only if  and  fall into the same segment

So  is the average of these products

It makes sense to replace with  (whole series version)

- xt xt+r

- {k(m − |r|) m}−1 ∑k
j=1 cj,r

- n /(n − |r|)cr
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Bartlett spectrum estimate

Replacing  with , the modified version is

Vs periodogram

· {k(m − |r|) m}−1 ∑k
j=1 cj,r n /(n − |r|)cr

(f) = exp(−2πifr) = exp(−2πifr),ŝB ∑
|r|<m

1 − |r|/m

1 − |r|/n
cr ∑

|r|<m

wrcr

where .

 is known as the Bartlett spectrum estimate

 is the weight at lag 

- = (1 − |r|/m)/(1 − |r|/n)wr

- (f)ŝB

- wr r

·

All terms with  will be omitted

The remaining terms are progressively reduced in magnitude by the weight 

Both effects make  smoother than the periodogram

Varying the truncation point  provides control over the degree of smoothness

However,  is not guaranteed to be positive unlike 

- |r| ≥ m

- wr

- (f)ŝB

- m

 is also called the bandwidth- m

- (f)ŝB I(f)
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Bartlett spectrum estimate

Bartlett spectrum estimates for the logarithms of the wheat prices, 1545-1844
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Smoothing the periodogram

The Bartlett spectrum estimate motivates smoothing the periodogram with other data windows 

The smoothing strategy is attractive when the truncation point  is small

· wr

A significant property is that  decays from 1 when  to 0 when 

Anderson (1994) lists the most commonly used windows and their properties

Bartlett window is the only window that decays linearly and rarely used in practice

- wr r = 0 r = ±m

This is common but not necessary, at least for long run variance estimation

See, e.g., Andrews (1991)

-

-

-

-

I think Bartlett window is quite popular, at least for long run variance estimation as well

It is also computationally efficient for spectrum estimation. See Xiao and Wu (2011)

-

-

· m

Only  autocovariances need to be computed

If  is large, the autocovariances can be computed efficiently using FFT and its inverse

- m

- m
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Computing the autocovariances

From previous derivation (p.144), we know that the periodogram is itself a Fourier series

This raises the possibility of using FFT to obtain autocovariance estimates

When the periodogram is evaluated at a Fourier frequency ,

Therefore, we have

·

·

· = j/nfj

I( ) = ( + ) exp(−2πi r),fj ∑
r=0

n−1

cr cn−r fj

provided that  is defined to be 0 for .- cr |r| ≥ n

·

+ = I( ) exp(2πi r),cr cn−r
1
n

∑
j=0

n−1

fj fj

which may be computed using inverse FFT.

However,  is not symmetric with 

This computation is only fine for small  as giving approximations of 

-

- cr cn−r

- r cr
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Computing the autocovariances

The problem of  can be solved by using a finer grid  for some 

We can pad the data with a block of  zeros. Then

Inversion now gives

· +cr cn−r = j/f ′
j n′ > nn′

· − nn′

I( ) = ( + ) exp(−2πi r).f ′
j ∑

r=0

n−1

cr c −rn′ f ′
j

·

+ = I( ) exp(2πi r),cr c −rn′
1
n′ ∑

j=0

−1n′

f ′
j f ′

j

which yields  exactly.

If , all autocovariance estimates are obtained.

FFT costs  times, which is faster than brute force 

- , ,… ,c0 c1 c −nn′

- = 2n − 1n′

Note that  only sum to 

Probably why the zeros may not contaminate the estimates

- I( )f ′
j n − 1

-

- O(n logn) O( )n2
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Representation of a spectrum estiamte

Suppose a spectrum estimate is given by ,

By the integral inversion formula (p.40), we have .

Therefore, any  of the above form may be written as an integral average of 

· (f) = exp(−2πifr)ŝ ∑|r|<n wrcr

where a truncation point  is no longer assumed.- m

· = I(f) exp(2πifr)dfcr ∫ 1
0

Then ,

where .

- (f) = (f − )I( )dŝ ∫ 1
0 Wn f ′ f ′ f ′

- (f) = exp(−2πifr)Wn ∑|r|<n wr

· (f)ŝ I(f)

The  is called the spectral window associated with the spectral estimate- (f)Wn

There is one-to-one relationship between  and - (f)Wn wr
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Spectral window

The spectral window of the Bartlett estimate has no closed form

Modified Bartlett estimate

If the spectral window and periodogram are both nonnegative,

·

The window is - = (1 − |r|/m)/(1 − |r|/n)wr

·

The window is 

The corresponding spectral window is

where  is the Dirichlet kernel (Section 2.2).

- = (1 − |r|/m)wr I|r|<m

-

(f) = (1 − ) exp(−2πifr) = m (f ,Wn ∑
|r|<m

|r|
m

Dm )2

- (f)Dm

·

then the spectrum estimate is guaranteed to be nonnegative.-

Important in long run variance estimation-
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Spectral window

Spectral windows for the modified Bartlett spectrum estimates
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Modified Bartlett spectrum estimate

The central peak in the spectral window of the modified Bartlett estimate is of height 

The first zeros on either side are at  cycles per unit time

However, a sizable proportion of the mass is contained in the sidelobes which decay slowly

The periodogram values at some distance from  may also contribute substantially to the integral

The estimated spectrum in one frequency may be swamped by leakage from another with high power

The sidelobes of the modified Bartlett window are larger and decay more slowly

Note that sidelobes are bound to exist for any spectrum estimates with truncation point 

· m

· f = ±1/m

·

· f

·

Even when these bands are not adjacent

Such leakage is different than the leakage in the periodogram itself

The major source is the sidelobes in the smoothing spectral window

-

-

-

·

As compared with Anderson (1994)

Thus it is rarely used

-

-

· m
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Another representation of a spectrum estiamte

From the representation , we have

Furthermore, we can write .

Daniell (1946) suggested .

I will skip the remaining of Section 8.5 which discuss the computation of discrete 

· (f) = (f − )I( )dŝ ∫ 1
0 Wn f ′ f ′ f ′

(f) = W ( )I(f − )d ,ŝ ∫ 1

0
f ′ f ′ f ′

for suitable function .- W (f)

· = W (f) exp(2πifr)dfwr ∫ 1
0

Mathematically,  are the Fourier coefficients of 

 is a partial sum of the Fourier series for 

- wr W (f)

- (f)Wn W (f)

Recall  is the spectral window

I understand this as constructing  reversely from the spectral window

- (f)Wn

- wr

· W (f) = (2δ)−1I|f|<δ

The resulting estimate is the integral analog of simple moving average filer (Section 7.2)

It may be applied successively to build up more complex filter (p.157)

-

-

· (f)ŝ
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Choice of a spectral window

Four factors need to be considered when choosing a spectral window:

Resolution: the ability of a spectrum estimate to represent fine structure in the frequency

Stability: the extent to which estimates from different segments agree

·

Resolution or bandwidth

Stability

Leakage

Smoothness

-

-

-

-

·

Such as narrow peaks in the spectrum

A narrow peak in the periodogram is usually spread out into a broader peak in the spectrum

This peak is roughly an image of the spectral window and its width is the bandwidth

If the spectrum contains two close narrow peaks, they may overlap and form a single peak

In this case, the estimate has failed to resolve the peaks

-

-

-

-

-

·

In other words, it is the ability to remove irrelevant fine structure

Resolution and stability are conflicting requirements

Section 9.5 gives a statistical treatment of the stability of spectrum estimates

-

-

Easy to see by definition-

-
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Choice of a spectral window

Leakage

Smoothness

·

Caused by sidelobes in the spectral window

Always exists if there is a nontrivial truncation point 

The computationally simpler discrete spectral averages (Section 8.5) can avoid leakage entriely

First, use a data window to control leakage in the periodogram

Second, use a spectral window of a desired compact form

-

- m < n

-

The part that I skip-

-

-

·

Less tangible but important in visualization

The need for smoothness can introduce further conflict in choosing a window

Bloomfield gave an example of Daniell estimate here

Repeated smoothing is possible but yields a less stable estimate

-

-

-

-
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Example: wheat price

Smoothed periodogram of logarithms of wheat price index, with spectral window inset (Modified Daniell
filer, m=6.)
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Example: wheat price

Smoothed periodogram of logarithms of wheat price index, with spectral window inset (Modified Daniell
filer, m=6,12.)
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Example: sunspot

For sunspot data, the spectral weights have the same span as the wheat price

For the square root transformation, refer to Section 6.7 for the idea

Further discussion of the choice of a spectral window available in Jenkins (1961) and Parzen (1961)

·

Which means they cover the same number of periodogram ordinates

However, they are smoother and have a narrower peak

The spectral estimates correspondingly show more rounded but slightly larger fluctuations

This argument is made more precise in Chapter 9

-

-

-

-

·

·

I try to find a more recent survey but have not yet found one-
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Example: sunspot

Smoothed periodogram of yearly sunspot numbers (solid line) and their square roots (broken line), with
spectral window inset (Modified Daniell filer, m=6,6,6.)
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Reroughing the spectrum

Recall repeated smoothing may yield a less stable estimate

In the context of linear filters, we have rough = input - output

Since spectra are nonnegative, we can instead define rough = input/output

To be specific, we can define the rough in spectrum estimation as

·

This seems to be the case for the wheat price spectrum

The trough between the two peaks at  and  is not as clear as it is before second
smoothing

Such loss of resolution suggests the possibility of oversmoothing

Similar probelm appears in the sunspot spectra

This motivates the idea of reroughing or twicing (Tukey, 1977)

-

- f = 0 f = 0.07

-

-

-

·

·

·

r(f) = .
I(f)
(f)ŝ
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Reroughing the spectrum

- The reroughted spectrum estimate is . - If the same filter is used in the second round
as in the first, the process is called twicing

If  suffers from oversmoothing,· (f)ŝ

there are narrow-band features in the periodogram that were not fully transferred to .

They will appear partially in , which can be extracted with another round of smoothing:

- (f)ŝ

- r(f)

(f) = r(f − ).r~ ∑
u

gu fu

(f) = (f) (f)ŝr r~ ŝ
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Example: wheat price

Twiced spectrum estiamte of wheat price index (solid line) and original esimtae (broken line) (Modified
Daniell filer, m=6,12.)
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Example: sunspot

Twiced spectrum estiamte of yearly sunspot numbers (solid line) and original esimtae (broken line)
(Modified Daniell filer, m=6,6,6.)
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Prewhitening

Reroughing is closely related to prewhitening (Blackman and Tukey, 1959)

Oversmoothing leads to leakage from frequency bands with high power to adjacent bands

Prewhitening is a technique for reducing dynamic range prior to forming the periodogram

Vs reroughing

·

·

From this perspective, oversmoothing is caused by a large dynamic range in the spectrum-

·

It reduces the leakage and allows the use of a more stable estimate with lower resolution

The simplest form of prewhitening is replacing the data by their first differences

-

-

I think differencing is also used as stationary transformation in practice-

·

Reroughing is an enhancement to spectrum estimation

Prewhitening is a form of preprocessing

-

-
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Concluding Remarks



Comments

Periodogram analysis

Spectrum estimation

·

Some practical problems and their solutions are covered

The statistical regularity over different segments remains a concern

-

-

·

Smoothing the periodogram to focus on the broad behavior

From Fourier transform form to autocovariance form

Data windows and their corresponding spectral window

Choice of spectral window

Reroughing and prewhitening

-

-

-

-

-
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